reccomended dosage cbd oil for cancer

CBD and Cancer: Benefits and Dosage

The use of cannabis as a medicine dates back to as early as 737 B.C.E., when Emperor Shen-Nung recognized that cannabis could be used in the treatment of several maladies, including gout, rheumatism, and malaria. Despite the fact that it has been largely prohibited in the United States since the 1930s, people have still turned towards cannabis for its medicinal properties, so much so that, beginning in 1996, states began legalizing cannabis for medical use. Fast forward to today and we have several states where medical, as well as recreational, marijuana is legalized.

Since cannabis has been long known to be a medicine, researchers have turned to it in research to see if it can benefit those with cancer. Cancer is a disease that has touched nearly every single American, either directly or through a loved one. Although the Food and Drug Administration has not yet approved cannabis as a treatment for cancer, many Americans are asking their physicians regarding the effects that cannabis can have on cancer and the symptoms it produces.

What is Cancer?

Rather than being one disease, cancer is the collective name given to any one of 100 different diseases that are caused by both external and genetic factors. In humans, our cells grow old and die. The body begins producing replacement cells. When cancer develops, abnormal cells, which include old and damaged cells, survive. Some of these cells begin dividing interminably and spread into surrounding tissues. They form what doctors call a tumor, which can hide in any of the body’s systems.

Without treatment, cancer is unlikely to go away on its own. While treatments can vary depending on the kind of cancer, many of the treatments are similar. They also can produce symptoms that are similar to, and in many cases, worse than, cancer itself.

Cannabis as a Cancer Treatment

Cannabis has several compounds known as cannabinoids. Two of these cannabinoids have received much attention as treatments for numerous ailments: tetrahydrocannabinol (THC) and cannabidiol (CBD). Cancer is no exception, and, while THC has been shown to inhibit tumor growth in certain kinds of cancer, CBD is not psychoactive and so scientists and medical professionals are looking to this beneficial cannabinoid to see how it may help to treat cancer.

While no trials have been conducted as of yet in humans, animal studies have shown CBD to be effective in the following:

  • Antitumor effects
  • Antiemetic effects
  • Appetite stimulation
  • Analgesia
  • Anxiety and sleep
  • Anti-tumor Effects

An in vitro study of the effect of CBD on breast cancer cells showed that CBD induced programmed cell death. CBD inhibited the survival of both kinds of breast cancer cells; estrogen receptor-positive and estrogen receptor-negative breast cancer cells, while having no effect of non-malignant breast tissue.

Another study showed that CBD showed a chemopreventive effect in mice models of colorectal cancer. Further, in studies regarding in vitro colorectal cancer cells, it was discovered that CBD protected DNA from oxidative damage, increased endocannabinoid levels, and reduced cell proliferation.

Antiemetic Effects

Both THC and CBD have anti-nausea effects. In one study, THC produced a dose-dependent suppression of vomiting. The higher doses provided greater suppression. When it came to CBD, lower doses produced a suppressive effect, while higher doses produced an enhanced effect on the emesis.

Appetite Stimulation

With nausea that comes with both cancer itself and the various medicinal treatments for the condition, maintaining a healthy weight can be difficult for patients. While CBD alone has not been shown to increase appetite, whole plant or full spectrum CBD oil can work to increase appetite.


Pain is another symptom suffered by cancer patients, stemming from both cancer itself and the treatments offered for the condition. Cannabis has been used for its analgesic effects for centuries. One study has shown that CBD and other cannabinoids might be effective in the relief of cancer pain.

Anxiety and Sleep

Anxiety and sleeplessness often accompany cancer. One study looked at the potential for CBD to be beneficial in promoting sleep and reducing anxiety. The study determined that, in patients given CBD, a majority experienced a lowering of anxiety levels and an increase in sleep.

CBD can be beneficial as a part of any cancer treatment. Of course, patients may want to be aware that CBD may cause certain side-effects.

Side-Effects of CBD

CBD does not affect the central nervous system in the same way that opiates for pain relief do. However, CBD may affect not only the brain but other tissues. In people who are sensitive to CBD, they may experience the following side-effects:

  • Fast heartbeat
  • Low blood pressure
  • Red eyes
  • Muscle relaxation
  • Slowed digestion


When it comes to formulating a daily regimen or dosage for CBD in the treatment of ailments like cancer, it is important to note that you shouldn’t be looking to cut corners on price. You should try to obtain the highest quality of CBD possible. Look for full-spectrum CBD oil in tinctures or gel capsules. Begin with a dosage of between 20mg – 40mg per day and increase the dose in 10mg increments until relief is felt.

Keep in mind that CBD consumed via this method may take up to 90 minutes for the full effects to be felt. This method is good for daily maintenance.
When it comes to managing acute flareups, look to a full-spectrum CBD isolate to vaporize. Isolate is up to 98% pure CBD, and relief can be felt quickly when vaping versus taking tinctures or edibles.

The Takeaway

The medical benefits of the cannabinoid CBD need more scientific research. When it comes to the possible benefits to cancer patients, even the American Cancer Society admits the studies done so far point to possible benefit from cannabis for cancer patients. In the course of cancer treatment, be sure that you discuss all treatment possibilities, even treatment with cannabis, with your health care professional.

The Effects of Dosage-Controlled Cannabis Capsules on Cancer-Related Cachexia and Anorexia Syndrome in Advanced Cancer Patients: Pilot Study

Background: Cancer-related cachexia and anorexia syndrome (CACS) is a common phenomenon in cancer patients. Cannabis has been suggested to stimulate appetite but research on this issue has yielded mixed results. The current study aimed to evaluate the effect of dosage-controlled cannabis capsules on CACS in advanced cancer patients. Methods: The cannabis capsules used in this study contained two fractions of oil-based compounds. The planned treatment was 2 × 10 mg per 24 hours for six months of tetrahydrocannabinol (THC) 9.5 mg and cannabidiol (CBD) 0.5 mg. If patients suffered from side effects, dosage was reduced to 5 mg × 2 per day (THC 4.75 mg, CBD 0.25 mg). Participants were weighed on every physician visit. The primary objective of the study was a weight gain of ≥10% from baseline. Results: Of 24 patients who signed the consent form, 17 started the cannabis capsules treatment, but only 11 received the capsules for more than two weeks. Three of six patients who completed the study period met the primary end-point. The remaining three patients had stable weights. In quality of life quaternaries, patients reported less appetite loss after the cannabis treatment (p=0.05). Tumor necrosis factor-α (TNF-α) levels decreased after the cannabis treatment but without statistical significance. According to patients’ self-reports, improvement in appetite and mood as well as a reduction in pain and fatigue was demonstrated. Conclusions: Despite various limitations, this preliminary study demonstrated a weight increase of ≥10% in 3/17 (17.6%) patients with doses of 5mgx1 or 5mgx2 capsules daily, without significant side effects. The results justify a larger study with dosage-controlled cannabis capsules in CACS.


Cachexia is defined as a “multifactorial syndrome characterized by an ongoing loss of skeletal muscle mass (with or without loss of fat mass) that cannot be fully reversed by conventional nutritional support and leads to progressive functional impairment.” 1 Cachexia may be masked by excess weight, obesity, edema, 2 or tumor mass. 3 Anorexia is a subjective term describing reduction or loss of appetite. Although it is commonly known that patients coping with cancer and cancer treatments experience loss of appetite, the exact prevalence of anorexia is unknown. In one study on advanced cancer patients, more than half the patients experienced anorexia. 4 A North Central Cancer Treatment Group study of 1115 patients with colorectal and lung cancer found that cancer patients with anorexia had lower survival rates and experienced more toxicity from chemotherapy than similarly matched patients who maintained their appetite. 5 Cachexia primarily caused by anorexia or reduced intake has been defined as cancer-related cachexia and anorexia syndrome (CACS). CACS, unlike cachexia, includes weight loss caused by muscle wasting, as well as lipolysis and decreased intake.

Cannabis has long been suggested to stimulate appetite, decrease nausea and vomiting, and improve quality of life (QoL) in cancer patients. 6 -8 However, the few studies on these effects yielded mixed and inconclusive findings. 9 -11 In addition, some studies included various methodological limitations that limit the ability to draw any firm clinical conclusions (eg, small sample, 12 unknown cannabis products, different ways of intake).

Several formulations of cannabis with different pharmacokinetic and pharmacodynamics are available in the market. Pulmonary assimilation of inhaled THC (tetrahydrocannabinol) causes a maximum plasma concentration within minutes; psychotropic effects start within seconds to a few minutes, reach a maximum after 15 to 30 minutes, and taper off within 2 to 3 hours. Following oral ingestion, absorption is slow and erratic, resulting in maximal plasma concentrations usually after 60 to 120 minutes. In several studies, maximal plasma concentrations were observed as late as 4 hours, and even 6 hours in some cases. 13 Several subjects showed more than 1 plasma peak. In case of oral administration, psychotropic effects set in with a delay of 30 to 90 minutes, reach their maximum after 2 to 3 hours, and last for about 4 to 12 hours, depending on dose and specific effect. 13 Another common route of administration is sublingual. Pure cannabinoids are extracted from the raw plant, dissolved in different oils, and administered with a dropper. The therapeutic window of sublingual oil administration is 2 to 4 hours with a rapid onset due to quick absorption through the oral cavity.

The most common oral administration of cannabinoids is through eating edibles, mainly cookies, chocolate bars, and lozenges. Since absorption is attenuated when cannabinoids are ingested orally, 14 edibles usually contain high dosages of cannabinoids (50-300 mg). The high dosage may cause undesirable side effects, mainly dizziness, anxiety, and dissociation. These side effects may cause patients to withdraw from the therapeutic process. The oral administration route has the longest therapeutic window (4-8 hours) 14 and lacks the undesirable effects of smoking. The unmet need for an oral formulation with higher bioavailability and a lower peak of psychoactive effect led us to use a new oral capsule standardized with a longer therapeutic window and lower Cmax. 13,14 In Israel, cannabis pills are given under the regulations of the Ministry of Health to advanced cancer patients with various symptoms to improve their QoL. 15,16

Given the potential effect of cannabis use on CACS and the mixed findings regarding this subject, the current study aimed to evaluate the influence of cannabis pills on CACS in advanced cancer patients. Secondary objectives were to evaluate the safety and toxicity of the cannabis treatment and to observe changes in appetite and in TNF-α (tumor necrosis factor-α) levels.

To test the hypothesis that cannabis pills can improve body weight by more than 10%, the number needed to treat was calculated according to true response probability of less than 5%. This calculation with the same primary end point that achieved 3% true response on dronabinol and 11% on megestrol was based on the results of a phase III study. 9

Based on a significance level of .05 (α) and a power of 0.90, the sample size for the pilot study should be 21 patients. If only 1 patient achieves the primary end-point, the study will be terminated. 17


Participants and Procedure

The study enrolled patients with advanced cancer under treatment in the Division of Oncology at Rambam Health Care Campus in Haifa, Israel. Inclusion criteria comprised age older than 18 years, histological evidence of an incurable malignancy, estimated life expectancy ≥3 months, performance status ≤3 (ECOG [Eastern Cooperative Oncology Group]) classification, weight loss of at least 5% during the preceding 2 months (as documented in the patient’s medical file), and the patient’s belief that loss of appetite or weight loss is an ongoing problem for him. The use of chemotherapy or radiotherapy was allowed.

Exclusion criteria comprised patients with ongoing use of tube feedings or parenteral nutrition, edema or ascites, central nervous system metastases or brain tumors (patients with stable disease in the brain 28 days after treatment could be included in the study), treatment with adrenal corticosteroids (except for short-term dexamethasone during chemotherapy), androgens, progestational agents or other appetite stimulants during the previous 2 weeks, insulin-requiring diabetes, pregnancy or lactation or unwillingness to use oral contraceptives, other life-threatening medical conditions, anticipated alcohol or barbiturate use during the study period, mechanical obstruction of the alimentary tract, malabsorption, or intractable vomiting, and use of cannabis or synthetic cannabinoids in the preceding 4 weeks.

All patients provided written informed consent. The study protocol was approved by the Ministry of Health Unit for Medical Cannabis and by the hospital’s institutional ethics committee (0275-14-RMB). The study ( <"type":"clinical-trial","attrs":<"text":"NCT02359123","term_id":"NCT02359123">> NCT02359123) was conducted in accordance with good clinical practice and the Helsinki Declaration.

Study Design and Treatment

The cannabis capsules used in this study contained 2 fractions of oil-based compounds, provided by Cannabics Pharmaceuticals Inc, Bethesda, MD. A liquid and transparent fraction, which contains pure cannabinoid extract dissolved in organic coconut oil, is responsible for the quick onset of the therapeutic effects within 20 to 60 minutes. A consolidated cannabinoid, lipid-based drug delivery systems fraction is responsible for a gradual and long-lasting therapeutic effect (6-8 hours), due to a proposed constant and steady release of active cannabinoids. The formulation contains a pure extract of cannabinoids, monoglyceride, and diglyceride (E471), combined with carrageenan, which is known for its controlled release properties 18 and organic coconut oil. The 2 highly abundant cannabinoids in cultivated cannabis plants are THC and CBD (cannabidiol). The study capsules contained either 10 mg of active cannabinoids of which THC is 9.5 mg and CBD is 0.5 mg or 5 mg of active cannabinoids (THC 4.75 mg and CBD 0.25 mg).

The planned treatment was 2 × 10 mg capsules per 24 hours. First intake is preferable in the morning. The second dosage could be administered after 8 hours according to patient’s need or before sleep for patients who suffer from sleep deprivation. In this study, patients were treated initially for 2 weeks with 1 × 10 mg capsules per day for gradual adaptation and the dose could be increased to 2 × 10 mg capsules per 24 hours after. However, if patients suffered from side effects that reduced significant daily life activities, mainly related to dizziness, and/or anxiety, their dosage was reduced to 5 mg per day. The decision of dose reduction was taken in relation to patients’ report of side effects and adherence to the protocol.

Assessment Tools

Physical examination, including weighing the patient and toxicity assessment according to CTCAE (Common Terminology Criteria for Adverse Events) recommendations, 19 was done every 2 weeks during the first month, every month in the following 2 months, and every 6 weeks in the following 3 months. The primary objective of the study was a weight gain of ≥10% from baseline weight.

Blood count, biochemistry blood test including electrolytes, renal and liver function tests, albumin level, and total cholesterol level, and TNF-α level were drawn on day 1 and after 3 months.

QoL was assessed at day 1 using the European Organization of Research and Treatment of Cancer core questions on the Quality of Life Questionnaire, version 2 (EORTC QLQ-C30. 20

Urine THC levels were checked on day 1 to exclude the use of cannabis or synthetic cannabinoids.

Evaluation of side effects was done during every physician visit.

All outcome measures were calculated based on published normative data.


Patients’ Characteristics

Twenty-four patients signed the consent form and entered the study. Median age of the entire group of patients was 66 years, and 62.5% were male. Those patients had 12 different malignancies; the most prevalent types were pancreas and colon carcinoma (4 patients each) and lung and prostate carcinoma (3 patients each). Chemotherapy was administered to 21 (87.5%) patients, 3 together with radiation. Only 2 patients received immunotherapy and 1 received radiation alone. Median weight was 65.5 kg, and median ECOG performance status was 1.

Of 24 patients who signed the consent form, 17 started the cannabis capsules treatment ( Figure 1 ). Seven patients withdrew from the study before beginning cannabis intake. Among these patients, 2 decided to receive cannabis in a different way, 3 withdrew from the study without any specific explanation, 1 began to suffer from dysphagia and did not meet the exclusion criteria, and 1 patient had rapid deterioration due to disease progression. Six patients withdrew from the study during the first 2 weeks of treatment. Four patients dropped out due to side effects of the cannabis treatment, 3 on the higher dose of cannabis capsules of 10 mg; 2 patients withdrew from the study due to rapid disease progression and severe chemotherapy side effects. Eleven patients participated in this study for more than 2 weeks of treatment; their demographics and characteristics are described in Table 1 . Five patients dropped out between 2 weeks and 4.5 months. Three patients withdrew from the study due to disease progression and 2 patients due to side effects of cannabis intake. Six patients completed the study and received cannabis capsules for a period of 6 months ( Table 1 ).

Table 1.

Demographics and Medical Characteristics of Patients Treated With Cannabis Pills for More Than 2 Weeks.

Patient Number Cancer Type Cancer Treatment Response to Treatment During the Study PS Age Baseline Weight Weight at End of Study Baseline TNF-α (pg/mL) TNF-α at End of Study (pg/mL)
1 Lung Immunotherapy TP 1 71 74.2 73.3
2 Pancreas Chemotherapy PR 2 69 74 73.5 68.4 26.5
3 Prostate Chemotherapy SD 1 80 72 72
4 Sarcoma Chemotherapy + radiation PR 1 66 56 62.5
5 Stomach Chemotherapy PR 1 77 53 53
6 Melanoma Chemotherapy TP 1 77 65 65 5.2 140.2
7 Gastric Chemotherapy + biological SD 1 70 58 62.5 5.3 0
8 Pancreas Chemotherapy PR 1 69 74 74 13.8 52
9 Head and neck Chemotherapy + immunotherapy PR 1 68 66 73 75.6 27.5
10 Stomach Chemotherapy + biological PR 2 57 54.4 54.2
11 Lung Immunotherapy PR 1 67 55.5 67.5 82 3.4

Abbreviations: PS, performance status; TP, tumor progression; PR, partial response; SD, stable disease; TNF-α, tumor necrosis factor-α.

Six patients were included in the analysis of TNF-α levels before and after the cannabis treatment (these patients received cannabis capsules for a period of 6 months). Among these 6 patients, 4 demonstrated a decrease in TNF-α level with correspondence to weight gain or stability during this period ( Table 1 ).

Cannabis Dosage

The initial planned dose of 10 mg capsules was given to the first 4/17 patients who started the cannabis treatment. These 4 patients received 1 capsule of 10 mg daily for a minimum of 2 weeks and a maximum of 4.5 months. Among these 4 patients, 3 withdrew from the study because of cannabis side effects, while taking only one 10 mg capsule. The other patient took 2 capsules of 10 mg without side effects, but withdrew due to general deterioration related to disease progression.

The rest of the 13 patients were given a reduced dosage of 5 mg capsules. Of these 13 patients, 10 received one 5 mg capsule daily for periods ranging from 2 weeks to 6 months. Only 3 patients received 5 mg twice a day. Among these 3, one received 1 capsule of 5 mg daily for 5 days and then dosage was increased to 2 capsules daily for 9 days. This patient dropped out after 2 weeks due to severe chemotherapy-related side effects. The second patient received 1 capsule of 5 mg for 2 months and 2 capsules daily until study completion, and the third patient received one 5 mg capsule daily for 1 month and 2 capsules daily until study completion. Tachycardia was not reported as an adverse event during this study.

Body Weight Evolution

The patients’ body weight variations are summarized in Table 2 . Among the 7 patients who dropped out of the study during the first 2 weeks of treatment, no data were available regarding weight variations. Four of the 5 patients who dropped out between 2 weeks and 4.5 months lost weight during the study period, due to disease progression and changes in oncological treatment, with deterioration related to chemotherapy side effects.

Table 2.

Patient’s Body Weight Variations (Number of Patients).

Dropout Timeline Loss of Weight Stable Weight Weight Increase <10% Weight Increase >10%
0.5-4.5 months 4 1 0 0
6 months (study completion) 0 2 1 3

Among the 6 patients who completed the study and took the capsules for a period of 6 months, 2 patients remained at a stable weight, 1 had a weight increase of 7.7%, and 3 patients met the primary end-point, showing a weight increase of more than 10% (10.6%, 11.6%, and 21.6%).

Quality of Life Analysis

Six patients were included in the statistical analysis of the EORTC QLQ-C30. Among these 6, five completed the study and received cannabis capsules for a period of 6 months and 1 patient took the cannabis treatment for a period of 4.5 months. The results showed no significant difference in the overall QoL score before and after the cannabis treatment. However, in the appetite loss subscale of the questionnaire, it was found that patients reported significantly fewer complaints about appetite loss after receiving the cannabis treatment (P = .05). Figure 2 demonstrates the scores of this subscale among the 6 patients who completed the cannabis treatment.

EORTC QLQ-C30 appetitive loss subscale among the 6 patients who completed the cannabis treatment (EORTC QLQ-C30, European Organization of Research and Treatment of Cancer Quality of Life Questionnaires).

Patients’ Self-Reports Regarding Cannabis Treatment

Table 3 summarizes the positive secondary effects from the cannabis capsules. Almost all patients who crossed the first 2 weeks of cannabis treatment reported an increase in appetite. Pain reduction and sleep improvement were reported by half the patients who completed the study. In addition, mood improvement and fatigue reduction were reported by 2 patients.

Table 3.

Patients’ Self-Reports Regarding Secondary Symptoms From Cannabis Capsules (Number of Patients).

Appetite Increase Pain Reduction Sleep Improvement
Until 2 weeks 0 0 0
Between 2 weeks and 4.5 months 5 (100%) 0 0
6 months (study completion) 5 (83.3%) 3 (50%) 3 (50%)

However, high numbers of patients reported side effects due to cannabis intake. Among the 4 patients who received 10 mg capsules, 3 (75%) reported side effects such as tiredness, dizziness, disorientation, anxiety, hallucinations, and altered general functioning. Among the 13 patients who received 5 mg capsules, 3 (23%) dropped out of the study because of similar side effects. All psychoactive side effects occurred 1 to 2 hours after the cannabis capsule intake, lasted for 2 to 3 hours, and caused incapacity to be physically active during these hours. All reported side effects were CTCAE grade 1 to 2 only, but interfered with daily life for those hours.


The present study aimed at evaluating the effect of dosage-controlled cannabis capsules on CACS and, more specifically, on weight variations in advanced cancer patients. The current preliminary findings showed a weight increase of ≥10% for 3 patients (50% of those patients who completed the study). The remaining patients had stable weights. Also, all patients who were involved in the study for 4.5 months reported an increase in appetite, as did 83% of the patients who completed the study. For 50% of the patients who completed the study, there were reports of pain reduction and sleep improvement. Additional results showed a significant decrease of appetite loss complaints among 83% of the patients who completed the study.

TNF-α, a pro-inflammatory cytokine, has an important role in the pathological mechanisms of cachexia in cancer. No statistical significance was seen in TNF-α level changes during this study; however, 4 patients of 6 completed the study and received cannabis capsules for a period of 6 months and demonstrated a decrease in TNF-α levels. This decrease was in correspondence to weigh gain or stability for those patients.

None of the other studies currently in the literature were conducted with controlled cannabis dosages, and routes of administration varied greatly, and therefore their results remain ambiguous. Dronabinol, or synthesized delta-9-tetrahydrocannabinol, is a naturally occurring compound activated in the central nervous system by cannabinoid receptors, and closely mimics the action of Cannabis sativa. The use of oral dronabinol in the management of anorexia and weight loss in HIV/AIDS patients revealed a positive effect on weight gain and led to several studies that were done with cancer patients. Those studies did not meet their primary endpoint. However, dronabinol had been associated with improved taste, smell, and food enjoyment. 21

A number of studies investigating the efficacy of synthetic cannabinoids or purified extracts of THC/CBD in the treatment of cancer-associated symptoms have been published. 22 -27 A randomized study with 469 advanced cancer patients suffering from cancer-related cachexia compared dronabinol with megestrol acetate or both treatments together on appetite improvement and weight gain. Results showed greater appetite improvement among the megestrol acetate-treated patients compared with the dronabinol-treated patients, 75% versus 49% (P = .0001). One important limitation of that clinical trial is the lack of a placebo-controlled arm to evaluate the efficacy of THC for cachexia. 10

Another randomized study compared the effects on appetite of a combination of THC and CBD to THC alone or placebo among patients suffering from cancer-related anorexia-cachexia for 6 weeks. No significant differences between the groups were seen regarding improvement in appetite or weight gain. It should be noted that CBD dosages in the study were low, even in comparison to other studies, 11 which might explain the lack of differences found between the groups.

An additional study explored the effects of oral dronabinol with dosages varying from 2.5 to 20 mg per day on appetite, taste perception and food consumption in 50 cancer patients with decreased appetite, and chemosensory alterations, compared with placebo. 12 Results showed a significant improvement in appetite and protein consumption in the dronabinol group, thus supporting the claim that the failure of the previous trials to show any effects may be due to a suboptimal dosage. It appears clear that the main limitations of the existing literature on cannabis and CACS are the lack of controlled dosage of cannabis extracts used by patients, their administration and daily consumption, as well as the lack of objective measures of weight variations.

Over the years, as the therapeutic effects of cannabis have been explored, new routes of administration, including oral-mucosal, vaporization, or sublingual, have been examined. 28 While clinical studies show contradictory data regarding a correlation between smoking cannabis and respiratory diseases, 29 most physicians agree that smoking medical cannabis, while having its benefits, is not a healthy or standardized therapy. Depending on the route of administration, the absorption properties of cannabinoids and THC and the bioavailability vary greatly.

The formulation of the study capsule is a lipid-based drug delivery system, which highly improves the relatively low oral bioavailability (related to absorption, degradation, and metabolism). To the best of our knowledge, no prospective clinical trials exploring the effects of natural cannabis in the form of capsules with specific controlled dosage, according to the Good Clinical Practice criteria, on CACS in advanced cancer patients have been published. The initial dosage of cannabis that was given to the patients was 10 mg. In a prestudy use of capsules with 25 mg THC that were available in the Israeli market for cancer patients, minor side effects were reported by the patient to the company. The decision to lower the dosage to 10 mg THC came from the need to be in line with the regulation in the US market where the capsule is being sold as a medical cannabis product. The side effects of 10 mg of THC were mainly due to the patients being treatment-naïve with very high sensitivity/low tolerance to the psychoactive effect.

However, during the study, some patients reported several psychoactive side effects and it was decided to reduce the capsules’ dosage to 5 mg. Almost no side effects were reported with the 5 mg dosage. It seems that this dosage is appropriate for the treatment of CACS in advanced cancer patients under active treatment.

This study has several limitations. One is the number of patients who dropped out before study completion. This may be explained by the level of disease progression in a number of patients. Most patients suffered from various types of advanced cancer and received heavy oncological treatments at the time of the study. These conditions may have caused difficulties for these patients to take the cannabis capsules and to stay in the study until its completion. Another limitation is the lack of data collected throughout the study. This limitation may be explained mainly by the patients’ physical condition that may have influenced their compliance regarding completing the questionnaires and returning them on time.

To the best of our knowledge, this is the first study investigating the effect of dosage-controlled cannabis capsules on CACS and, more specifically, on weight variations in advanced cancer patients.


Despite various limitations, the current preliminary study demonstrated a weight increase of ≥10% in 3/17 (17.6%) of the patients with doses of 5 mg × 1 or 5 mg × 2 capsules daily, without significant side effects. The results justify a larger study with dosage-controlled cannabis capsules in CACS.

CBD in Treating Cancer and Related Symptoms

An Emerging and Alternative Therapy That Still Requires Much Investigation

Arno Kroner, DAOM, LAc, is a board-certified acupuncturist, as well as an herbalist and integrative medicine doctor. He operates a private practice in Santa Monica, California.

Cannabidiol (CBD) is one of many compounds (called cannabinoids) found in the marijuana plant Cannabis sativa. CBD is known for its relaxing and pain-soothing effects.

CBD is non-psychoactive, so it does not give you the classic mind-altering euphoria or “high” felt from using marijuana—that effect comes from the cannabinoid called THC (tetrahydrocannabinol).

While the research is still very early, experts speculate that CBD may play a role in treating cancer, specifically by slowing tumor growth and inducing the death of cancer cells. CBD may also help manage unpleasant symptoms related to cancer and chemotherapy, such as pain, nausea, and vomiting.

CBD and Treating Cancer

There are a number of studies supporting CBD’s potential anti-cancer role—however, the majority are limited to in vitro and animal studies. For example, in various studies, there is evidence that CBD decreases the growth of lung and prostate tumors, provokes the cell death of colon, lung, and brain cancer cells, and reduces the spread (metastasis) of breast cancer.  

While promising, large human clinical trials are needed to better understand whether CBD is truly effective in helping to treat cancer. Clinical trials would also allow experts to tease out issues like dosage, interaction with other cancer drugs, and CBD's safety profile.

As of now, there are only a handful of human studies that have examined CBD's anti-cancer role.

Here are a few examples:

  • In one study of 119 cancer patients (most of the cancers were metastatic and traditional cancer therapies had been exhausted), CBD oil was given on a three day on and three days off schedule. In most of the patients, an improvement in their cancer was noted, such as a decrease in tumor size. No side effects from CBD were reported.
  • In a case study, an elderly man with lung cancer refused traditional chemotherapy and radiation for his cancer treatment and instead, self-administered CBD oil. After one month of taking the CBD oil, a computed tomography (CT) scan revealed near-total resolution of his lung tumor along with a reduction in the number and size of chest lymph nodes.
  • In another study, two patients with aggressive gliomas (a type of brain tumor) were given CBD capsules in addition to chemoradiation and a multidrug regimen. Both patients had a positive response to the treatment with no evidence of disease worsening for at least two years.

Keep in mind—these studies are extremely small and lack a control group, so no finite conclusions can be drawn from them. Nevertheless, they spark further interest in the possible role of CBD in treating cancer.

CBD and Treating Cancer-Related Symptoms

There is scientific evidence, although limited and not robust, that CBD, THC, or a combination of the two, may be effective in alleviating certain cancer-related symptoms, such as pain, appetite loss, and chemotherapy-induced nausea and vomiting.

For instance, the drugs Marinol (dronabinol) and Cesamet (nabilone), which are synthetic forms of THC, are approved in the United States for treating chemotherapy-induced nausea and vomiting. Research suggests that dronabinol may also improve the taste of food, appetite, sleep, and quality of life in cancer patients.  

In addition, a mouth spray that contains both THC and CBD (called Sativex) is being investigated for its role in treating cancer pain (especially nerve-related pain) that is poorly controlled by opioids.   The drug is currently not available in the United States, but it is available in Canada for treating advanced cancer pain.

Lastly, research has found that in the general population (so not necessarily patients with cancer), CBD can reduce anxiety and improve sleep quality.   This finding is helpful, considering the diagnosis and treatment of cancer is often overwhelming and wrought with fear and worry.

CBD Considerations

With the potentially emerging use of CBD in treating cancer and/or its related symptoms, there are a few issues to consider.


CBD oil is perhaps the most commonly utilized formulation of CBD, as it’s easy to use and allows for a high dose of consumption. However, CBD comes in many other forms—gummies, tinctures, capsules, vapes, and ointments, to name a few.

Sorting out how to best administer CBD to patients with cancer may prove to be challenging, as various formulations may work or absorb differently.

Side Effects

While research suggests that CBD is generally well-tolerated, we need to more closely examine potential side effects in patients with cancer. In addition, we still do not know the long-term effects of taking CBD, or how it interacts with other medications.

Short-term side effects of CBD may include:  

  • Reduced or increased appetite
  • Weight gain or loss
  • Tiredness
  • Diarrhea
  • Increase in liver enzymes

If CBD is combined with THC (in the form of medical marijuana), other side effects may occur, such as:  

  • Dizziness
  • Dry mouth
  • Nausea
  • Disorientation and confusion
  • Loss of balance
  • Hallucinations


While CBD by itself is federally legal (as long as the product is derived from hemp and contains no more than 0.3% THC), marijuana is not (although, it is legal in some states).

CBD is only available by prescription in the United States in the form of a drug called Epidiolex. This drug is used to treat refractory epilepsy.

Due to these legal conundrums, CBD products may not be as tightly regulated as hoped. With that, products that claim they have a certain CBD dosage may actually contain a different amount or even contain traces of THC. This is why it is important to only take CBD under the guidance of your personal healthcare provider.

A Word From Verywell

The prospect of incorporating CBD into cancer care is intriguing but still requires much more investigation. Until then, if you are considering trying CBD (whether you have cancer or not), it's best to talk out the pros and cons with your healthcare provider.